Approach for energy management in industrial systems : use case : scheduling of automated guided vehicles in job-shop manufacturing system with energy constraints

dc.contributor.authorABDERRAHIM Moussa
dc.date.accessioned2022-10-25T09:47:15Z
dc.date.available2022-10-25T09:47:15Z
dc.date.issued2021-07-25
dc.description.abstractIndustry 4.0 concepts are moving towards flexible and energy-efficient factories. For the same purposes, battery-based Automated Guided Vehicles (AGV) are used in flexible production lines as part of their material handling systems to allow greater control over transportation tasks. Therefore, an optimal battery management for these vehicles can significantly shorten lead times. In this thesis, a Job-shop scheduling problem in AGV based manufacturing facility is viewed as being mainly related to both the assignment of resource functions and the AGV batteries management. The studied Job-shop production cell has two types of resources: machines that manufacture products, and transportation vehicles that ensure the transfer of parts between these machines. To achieve this purpose, we use an approach that supports the expected results from the Industry 4.0, relying mainly on increasing productivity by makespan minimization, and improving energy use through management of transport vehicle batteries replenishment. This approach is based on two modified versions of the Variable Neighborhood Search algorithm (VNS), and a new mathematical formulation that improves the computation of the lower bound for the manufacturing process makespan. Finally, experimental tests will be conducted on enhanced instances of a widely used literature benchmark to evaluate the efficiency of the implemented models.
dc.formatpdf
dc.identifier.urihttps://dspace.univ-oran1.dz/handle/123456789/193
dc.language.isofr
dc.publisherUniversité Oran1 Ahmed Ben Bella
dc.subjectManufacturing scheduling
dc.subjectControl
dc.subjectManufacturing systems
dc.subjectJob-Shop
dc.subjectTransport constraints
dc.subjectMathematical formulation
dc.subjectLower bound
dc.subjectVariable Neighborhood Search
dc.subjectAutomated Guided Vehicle
dc.subjectBattery Management
dc.titleApproach for energy management in industrial systems : use case : scheduling of automated guided vehicles in job-shop manufacturing system with energy constraints
dc.typeThesis
grade.Co-rapporteurAISSANI Nassima, MCA, Université Oran 2
grade.ExaminateurCHAKER Abdelkader, Professeur, ENPO - Oran
grade.ExaminateurHACHEMI Khalid, Professeur, Université Oran 1
grade.ExaminateurLEBBAH Yahia, Professeur, Université Oran 1
grade.InviteBEKRAR Abdelghani, Professeur, Université UPHF - Valenciennes
grade.PrésidentBENYAMINA Abou el Hassen, Professeur, Université Oran 1
grade.RapporteurBOUAMRANE Karim, Professeur, Université Oran 1
l'article.1.DateParution26 Novembre 2020
l'article.1.RevueOptimization Letters
l'article.1.RéférenceAbderrahim, M., Bekrar, A., Trentesaux, D., Aissani, N., Bouamrane, K. « Bi-local search based variable neighborhood search for job-shop scheduling problem with transport constraints”. Optim Lett (2020), 1-26. https://doi.org/10.1007/s11590-020-01674-0
l'article.1.TitreBi-local search based variable neighborhood search for job-shop scheduling problem with transport constraints
la.MentionTrès honorables
la.SpécialitéMANUFACTURING SYSTEMS AND KNOWLEDGE ENGINEERING
la.coteTH5239
Fichiers
Bundle original
Voici les éléments 1 - 1 sur 1
Vignette d'image
Nom :
TH5239.pdf
Taille :
1.99 MB
Format :
Adobe Portable Document Format
Description :
Bundle de license
Voici les éléments 1 - 1 sur 1
Pas de vignette d'image disponible
Nom :
license.txt
Taille :
1.71 KB
Format :
Item-specific license agreed to upon submission
Description :