Contribution à l’Observabilité des Systèmes Linéaires Perturbés

dc.contributor.authorBarigou Ahmed
dc.date.accessioned2022-11-28T16:29:59Z
dc.date.available2022-11-28T16:29:59Z
dc.date.issued2010-12-14
dc.description.abstractThis thesis is mainly devoted to the ideal observability of abstract linear systems with bounded operators. The contributions brought in this context may be considered as the extensions to Hilbert space of the fundamental results developed up to now in the finite dimensional spaces. The systems considered all along this work will be supposed to be governed in their phase space by the triple (A;B;H) according to the equations: (1.1) x’(t) = Ax(t) + Bu(t); t=>0; (1.2) y(t) = Hx(t); t in [0; T] : Shortly speaking, our aim will be the reconstructibility of the state trajectory x(.) of (1.1) on the observation time interval [0; T] ; for given A; B; and H; and solely from the knowledge of the output y(.) generated according to (1.2) under the action of the disturbance u(.).
dc.formatpdf
dc.identifier.urihttps://dspace.univ-oran1.dz/handle/123456789/1332
dc.language.isofr
dc.publisherUniversité Oran1 Ahmed Ben Bella
dc.subjectBounded operator
dc.subjectLinear system
dc.subjectBochner integrable perturbation
dc.subjectHilbert space
dc.subjectBanach space
dc.subjectIdeal observability
dc.subjectKalman observability
dc.subjectConditioned invariance
dc.subjectControlled invariance
dc.subjectOperator factorization
dc.titleContribution à l’Observabilité des Systèmes Linéaires Perturbés
grade.ExaminateurM. M. BEKKAR, Professeur, Université d’Oran
grade.ExaminateurA. TALHAOUI, Maître de Conférences, ENSET-ORAN
grade.ExaminateurD. BOUAGGADA, Maître de Conférences, Université de Mostaganem
grade.OptionThéorie Mathématique du Contrôle
grade.PrésidentM. TERBECHE, Professeur, Université d’Oran
grade.RapporteurB. MESSIRDI, Professeur, Université d’Oran
l'article.1.DateParution2010
l'article.1.RevueOn the lack of ideal observability in Hilbert space
l'article.1.RéférenceApplied Mathematical Sciences, Vol. 4, 2010, no. 59, 2931-2941. 2010
l'article.1.TitreApplied Mathematical Sciences (ISSN 1312-885X)
la.SpécialitéMathématique
la.coteTH3268
Fichiers
Bundle original
Voici les éléments 1 - 1 sur 1
Vignette d'image
Nom :
TH3268.pdf
Taille :
510.27 KB
Format :
Adobe Portable Document Format
Description :