On Extremum Problems Having Infinite Dimensional Image From Lagrangian Multipliers to Selection Multipliers.

dc.contributor.authorMADANI Khaldia
dc.date.accessioned2022-11-29T09:56:47Z
dc.date.available2022-11-29T09:56:47Z
dc.date.issued04-2009
dc.description.abstractThis thesis deals with image space analysis for constrained extremum problems having an infinite-dimensional image. It is shown that the introduction of the selection for point-to-set maps and of quasi-selection multipliers functions allows one, firstly to recover the classic optimality conditions for problem of Calculus of Variations of geodesic type, to give optimality conditions for problems, where the classical approach fails. Finally, an approximation by a finite dimensional image problem is given and an enlargement of the set of Lagrangian multipliers is proposed.
dc.formatpdf
dc.identifier.urihttps://dspace.univ-oran1.dz/handle/123456789/1623
dc.language.isofr
dc.publisherUniversité Oran 1 Ahmed Ben Bella
dc.subjectOptimality Conditions
dc.subjectQuasi-Generalized Selection
dc.subjectSelection Multipliers
dc.subjectLagrangian Multipliers
dc.subjectDual problem
dc.subjectImage Space Analysis AMS Classification : 90C,65K
dc.titleOn Extremum Problems Having Infinite Dimensional Image From Lagrangian Multipliers to Selection Multipliers.
grade.ExaminateurABBAS Moncef, Professeur, USTHB ALGER
grade.ExaminateurTERBECHE Mekki, Professeur, Université Oran
grade.ExaminateurCHAABANE Djamal, MCA, USTHB ALGER
grade.ExaminateurREMILI Moussadek, MCA, Université Oran
grade.OptionMATHEMATIQUES
grade.PrésidentMESSIRDI Bekkai , Professeur, Université Oran
grade.RapporteurBELKHELFA Mohamed, MCA, Université DE MASCARA
la.SpécialitéMathématique
la.coteTH2891
Fichiers
Bundle original
Voici les éléments 1 - 1 sur 1
Vignette d'image
Nom :
TH2891.pdf
Taille :
615.15 KB
Format :
Adobe Portable Document Format
Description :